metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[propane-1,3-diammonium [diaguatetrakis(*µ*₄-benzene-1,2,4,5-tetracarboxylato)nickelate(II)] hemihydrate]

Hossein Aghabozorg,^a* Zohreh Bahrami,^a Masoumeh Tabatabaie,^b Mohammad Ghadermazi^c and Jafar Attar Gharamaleki^a

^aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, ^bIslamic Azad University, Yazd Branch, Yazd, Iran, and ^cDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran Correspondence e-mail: haghabozorg@yahoo.com

Received 10 June 2007; accepted 25 June 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.028; wR factor = 0.073; data-toparameter ratio = 18.4.

The reaction of nickel(II) nitrate hexahydrate with the protontransfer compound $(pnH_2)_2(btc)\cdot 2H_2O$ (where pn = propane-1,3-diamine and $btcH_4$ = benzene-1,2,4,5-tetracarboxylic acid) in aqueous solution resulted in the formation of the title compound, $\{(C_3H_{12}N_2)[Ni(C_{10}H_2O_8)(H_2O_2)] \cdot 0.5H_2O\}_n$. Each Ni²⁺ ion is situated on a crystallographic twofold rotation axis and is coordinated in a distorted octahedral geometry by six O atoms [Ni-O = 2.0540 (15)-2.0804 (11) Å] from two water molecules and four btc⁴⁻ ligands, which also act as bridging ligands between Ni²⁺ ions. In the crystal structure, intermolecular $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds and $C-H \cdot \cdot \pi$ interactions contribute to the formation of a three-dimensional supramolecular structure. The crystal studied was an inversion twin.

Related literature

For details of the preparation of related proton-transfer compounds, see: Aghabozorg et al. (2007); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006). For the crystal structures of related complexes, see: Aghabozorg, Ghasemikhah et al. (2006); Aghabozorg, Zabihi et al. (2006).

Experimental

Crystal data

$(C_3H_{12}N_2)[Ni(C_{10}H_2O_8)(H_2O_2)]$	
0.5H ₂ O	
$M_r = 430.01$	
Orthorhombic, Ima2	
a = 16.3724 (6) Å	
b = 7.1673 (4) Å	
r = 141857(8) Å	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.710, \ T_{\max} = 0.792$

Refinement

$R[F^{2} > 2\sigma(F^{2})] = 0.028 $	ined
2424 reflections Absolute structure: Flack (983),
132 parameters with 1113 Friedel pairs	
1 restraint Flack parameter: 0.412 (17)	

 $V = 1664.63 (15) \text{ Å}^3$

10153 measured reflections

2424 independent reflections

2353 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 1.23 \text{ mm}^{-1}$

T = 100.0 (2) K $0.30 \times 0.30 \times 0.20$ mm

 $R_{\rm int} = 0.022$

Z = 4

Table 1

Hydrogen-bond	geometry	and π	interactions	(A,	°)
---------------	----------	-----------	--------------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O2^{i}$	0.91	1.91	2.819 (2)	174
$N1 - H1B \cdot \cdot \cdot O3^{ii}$	0.90	2.03	2.838 (2)	149
$N1 - H1C \cdot \cdot \cdot O4^{iii}$	0.92	2.09	2.985 (2)	163
$O5-H5A\cdots O4^{i}$	0.90	1.82	2.668 (2)	156
$O5-H5B\cdots O2$	0.90	1.85	2.731 (2)	164
$O6-H6B\cdots O4^{iii}$	0.96	2.39	3.321 (3)	164
$C7-H7A\cdots Cg^{iv}$	0.99	2.97	3.757 (2)	137
$C8-H8A\cdots Cg^{iv}$	0.99	2.60	3.433 (2)	142

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x + 1, y - \frac{1}{2}, z - \frac{1}{2}$: (iv) $x + \frac{1}{2}$, $y + \frac{1}{2}$, $z + \frac{1}{2}$. Note: Cg is the centroid of ring C1–C4/C2ⁱ/C3ⁱ.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Financial support by the Islamic Azad University, Yazd Branch, and the Teacher Training University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2264).

References

- Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174-o3176.
- Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985-o2986.
- Aghabozorg, H., Ghasemikhah, P., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, m2266-m2268.
- Aghabozorg, H., Zabihi, F., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2091-m2093.
- Bruker (2001). SAINT-Plus. Version 6.2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2003). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m2022-m2023 [doi:10.1107/S1600536807030978]

Poly[propane-1,3-diammonium [diaquatetrakis(#4-benzene-1,2,4,5-tetracarboxylato)nickelate(II)] hemihydrate]

H. Aghabozorg, Z. Bahrami, M. Tabatabaie, M. Ghadermazi and J. Attar Gharamaleki

Comment

Just as there is a field of *molecular chemistry* based on the covalent bond, there is a field of *supramolecular chemistry*, the chemistry of molecular assemblies and intermolecular interactions. The importance of weak hydrogen bonds in the context of crystal engineering, molecular recognition and supramolecular chemistry have been well recognized in recent years. In this regard, we have reported cases in which proton transfer from pyridine-2,6-dicarboxylic acid (pydcH₂) and benzene-1,2,4,5-tetracarboxylicacid (btcH₄) to piperazine (pipz), propane-1,3-diamine and 1,10-phenanthroline (phen) resulted in the formation of novel self-assembled (pipzH₂)(pydc), (pnH₂)₂(btc)·2H₂O (Aghabozorg, *et al.*, 2007) and (phenH)₄(btcH₃)₂(btcH₂) (Aghabozorg, Ghadermazi & Gharamaleki, 2006) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to metallic ions (Aghabozorg, Ghasemikhah *et al.*, 2006; Aghabozorg, Zabihi*et al.*, 2006).

Here we report a new polymeric compound obtained from reaction of $(pnH_2)_2(btc)\cdot 2H_2O$ with nickel(II) nitrate. The crystal structure of the title polymeric compound is shown in Fig. 1. The intermolecular hydrogen bond distances are listed in the Table. The negative charge of the anionic complex is neutralized by dicationic propane-1,3-diaminium species. According to the crystal structure of (I), the coordination around Ni^{II} is distorted octahedral. A considerable feature of the compound (I) is the presence of C—H··· π stacking interactions between C—H groups of $(pnH_2)^{2+}$ cations and aromatic rings of $(btc)^{4-}$ fragments. The C—H··· π distances (measured to the centre of phenyl ring) are 2.60 Å for C8—H8A···*Cg*1 and 2.97 Å for C7—H7A···*Cg*1 with the angles of 142° and 137°, respectively [*Cg*1 is a centroid of C1—C4/C2ⁱ/C3ⁱ; symmetry code: (i) 1/2 + x, -1/2 + y, -1/2 + z]. The most important features of the crystal structure of (I) is a number of O—H···O, N—H···O and C—H···O hydrogen bonds between (pnH₂)²⁺ and [Ni(H₂O)₂(btc)]²⁻ fragments and uncoordinated water molecules with D···A distances ranging from 2.668 (2) Å to 3.242 (2) Å (Table). Ion pairing, C—H··· π stacking and van der Waals forces are also effective in the stabilization of the crystal structure, resulting in the formation of an interesting supramolecular structure (Fig. 2).

Experimental

The proton-transfer compound was prepared by a reaction between propane-1,3-diamine and benzene-1,2,4,5-tetracarboxylic acid (Aghabozorg *et al.*, 2007). Starting with a 1:1 molar ratio of the reactants in THF, a puffy white precipitate was obtained. By recrystallization in an aqueous solution, pale-yellow crystals were obtained. A solution of Ni(NO₃)₂·6H₂O (143 mg, 0.5 mmol) in water (15 ml) was added to an aqueous solution of (pnH₂)₂(btc)·2H₂O (253 mg, 1.0 mmol) in water (15 ml) in a 1:2 molar ratio. Crystals of (I) suitable for X-ray characterization were obtained after a few days at room temperature.

Refinement

The value of the Flack parameter of 0.412 (17) indicates that the absolute structure in this case cannot be determined unambiguously due to the specific centrosymmetric arrangement of the anionic pattern. The refinement of the structure in the centrosymmetric space group Imma gives rise to disodering of the dication.

The hydrogen atoms of coordinate water molecules and –NH3 groups were localized in difference Fourier synthesis, but placed in idealized positions (O—H 0.90 Å, N—H 0.90–0.92 Å). C-bound H atoms were placed in calculated positions (C—H 0.95–0.99 Å). The crystalline water molecule was treated as disordered between two positions related by a mirror plane with the occupancies of 0.25 (for O6) The attached H atoms were positioned geometrically (O—H 0.96, 0.97 Å). All H atoms were refined in a riding model with $U_{iso}(H)=1.2-1.3Ueq$ of the parent atom.

Figures

Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. The crystal packing of (I). Hydrogen bonds are shown as dashed lines.

Poly[propane-1,3-diammonium [diaquatetrakis(µ4-benzene-1,2,4,5-tetracarboxylato)nickelate(II)] hemihydrate]

Crystal data	
$(C_3H_{12}N_2)[Ni(C_{10}H_2O_8)(H_2O)_2] \cdot 0.5H_2O$	$F_{000} = 892$
$M_r = 430.01$	$D_{\rm x} = 1.716 {\rm ~Mg~m}^{-3}$
Orthorhombic, Ima2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: I 2 -2a	Cell parameters from 6046 reflections
<i>a</i> = 16.3724 (6) Å	$\theta = 2.5 - 30.0^{\circ}$
b = 7.1673 (4) Å	$\mu = 1.23 \text{ mm}^{-1}$
c = 14.1857 (8) Å	T = 100.0 (2) K
$V = 1664.63 (15) \text{ Å}^3$	Prism, colourless
Z = 4	$0.30 \times 0.30 \times 0.20 \text{ mm}$

Data collection

diffractometer

Radiation source: fine-focus sealed tube	2353 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 100.0(2) K	$\theta_{\text{max}} = 30.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -23 \rightarrow 22$
$T_{\min} = 0.710, \ T_{\max} = 0.792$	$k = -10 \rightarrow 10$
10153 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.028$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 1.1P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.073$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}$
2424 reflections	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
132 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1113 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.412 (17)
Secondary atom site location: difference Fourier man	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otronic	or el	nivalent	isotror	nic dis	nlacement	narameters	$(Å^2)$)
Fractional	utomic	coordinates	unu is	onopic	Ur et	γαιναιεπι	isonop	ne ais	piucemeni	purumeters (л)	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
N1	0.59831 (9)	0.2336 (2)	0.13471 (12)	0.0224 (3)	
H1A	0.5517	0.2517	0.1007	0.027*	
H1B	0.6023	0.3068	0.1862	0.027*	
H1C	0.5982	0.1168	0.1618	0.027*	
C7	0.67406 (11)	0.2598 (3)	0.07757 (14)	0.0223 (4)	
H7A	0.6754	0.3883	0.0521	0.027*	
H7B	0.6737	0.1719	0.0237	0.027*	
C8	0.7500	0.2259 (4)	0.1374 (2)	0.0227 (4)	

supplementary materials

H8A	0.7500	0.0960	0.1611	0.027*	
H8B	0.7500	0.3113	0.1922	0.027*	
Ni1	0.5000	0.5000	0.35324 (4)	0.01460 (8)	
01	0.40867 (9)	0.4393 (2)	0.44765 (10)	0.0196 (3)	
O2	0.46016 (8)	0.19013 (19)	0.52250 (10)	0.0223 (3)	
O3	0.41573 (8)	0.0581 (2)	0.74825 (10)	0.0186 (3)	
O4	0.43957 (8)	0.36127 (18)	0.71826 (10)	0.0217 (2)	
05	0.54310 (7)	0.22702 (15)	0.35648 (11)	0.0198 (2)	
H5A	0.5196	0.1739	0.3058	0.024*	
H5B	0.5204	0.1936	0.4118	0.024*	
C1	0.2500	0.3097 (4)	0.50968 (18)	0.0180 (5)	
H1	0.2500	0.3499	0.4459	0.022*	
C2	0.32398 (11)	0.2805 (3)	0.55610 (13)	0.0166 (3)	
C3	0.32397 (11)	0.2229 (2)	0.65041 (13)	0.0164 (3)	
C4	0.2500	0.1941 (4)	0.69672 (17)	0.0161 (4)	
H4	0.2500	0.1544	0.7606	0.019*	
C5	0.40460 (11)	0.3053 (3)	0.50457 (12)	0.0179 (3)	
C6	0.40005 (11)	0.2128 (2)	0.70882 (13)	0.0162 (3)	
O6	0.7040 (7)	0.0338 (19)	0.3588 (14)	0.088 (4)	0.25
H6A	0.7500	-0.0326	0.3312	0.105*	0.50
H6B	0.6575	-0.0252	0.3298	0.105*	0.25

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0173 (6)	0.0238 (7)	0.0261 (7)	-0.0001 (5)	0.0008 (5)	-0.0031 (6)
C7	0.0207 (7)	0.0201 (8)	0.0261 (9)	-0.0002 (6)	0.0001 (6)	-0.0003 (7)
C8	0.0197 (10)	0.0217 (11)	0.0266 (11)	0.000	0.000	-0.0006 (9)
Ni1	0.01386 (12)	0.01624 (12)	0.01370 (12)	-0.00143 (8)	0.000	0.000
01	0.0189 (6)	0.0204 (6)	0.0194 (6)	0.0014 (5)	0.0036 (5)	0.0037 (5)
O2	0.0193 (6)	0.0244 (6)	0.0233 (6)	0.0033 (5)	0.0031 (5)	0.0027 (5)
O3	0.0186 (6)	0.0191 (6)	0.0181 (6)	0.0010 (5)	-0.0030 (5)	0.0009 (5)
O4	0.0202 (5)	0.0209 (6)	0.0240 (6)	-0.0022 (5)	-0.0049 (5)	0.0026 (5)
O5	0.0211 (5)	0.0205 (5)	0.0177 (5)	-0.0003 (4)	-0.0020 (6)	-0.0010 (5)
C1	0.0179 (11)	0.0218 (11)	0.0145 (11)	0.000	0.000	0.0021 (9)
C2	0.0160 (7)	0.0181 (8)	0.0157 (8)	-0.0012 (6)	0.0027 (7)	0.0021 (6)
C3	0.0146 (7)	0.0164 (7)	0.0181 (8)	-0.0006 (6)	0.0001 (6)	-0.0002 (6)
C4	0.0156 (10)	0.0151 (10)	0.0175 (12)	0.000	0.000	0.0009 (8)
C5	0.0154 (7)	0.0210 (8)	0.0173 (8)	-0.0020 (6)	0.0014 (6)	-0.0016 (6)
C6	0.0144 (7)	0.0199 (8)	0.0144 (7)	0.0010 (6)	0.0013 (6)	0.0005 (6)
O6	0.071 (6)	0.137 (10)	0.055 (6)	0.048 (6)	-0.004 (8)	-0.008 (8)

Geometric parameters (Å, °)

N1—C7	1.493 (2)	O2—C5	1.254 (2)
N1—H1A	0.9121	O3—C6	1.268 (2)
N1—H1B	0.9011	O4—C6	1.253 (2)
N1—H1C	0.9210	O5—H5A	0.9000
C7—C8	1.525 (3)	O5—H5B	0.9011

С7—Н7А	0.9900	C1—C2	1.394 (2)
С7—Н7В	0.9900	С1—Н1	0.9500
C8—C7 ⁱ	1.525 (3)	C2—C3	1.400 (2)
C8—H8A	0.9900	C2—C5	1.519 (3)
C8—H8B	0.9900	C3—C4	1.393 (2)
Ni1-01	2.0540 (15)	C3—C6	1.498 (3)
Ni1—O3 ⁱⁱ	2.0724 (14)	C4—H4	0.9500
Ni1—O5	2.0804 (11)	O6—H6A	0.9729
O1—C5	1.257 (2)	O6—H6B	0.9631
C7—N1—H1A	112.9	O5 ⁱⁱⁱ —Ni1—O5	177.46 (10)
C7—N1—H1B	107.8	C5—O1—Ni1	128.29 (13)
H1A—N1—H1B	114.0	C6—O3—Ni1 ^v	128.88 (12)
C7—N1—H1C	110.0	Ni1—O5—H5A	103.6
H1A—N1—H1C	110.4	Ni1—O5—H5B	97.4
H1B—N1—H1C	101.0	H5A—O5—H5B	114.0
N1—C7—C8	110.80 (16)	C2 ^{vi} —C1—C2	120.6 (2)
N1—C7—H7A	109.5	C2—C1—H1	119.7
С8—С7—Н7А	109.5	C1—C2—C3	119.7 (2)
N1—C7—H7B	109.5	C1—C2—C5	120.65 (17)
С8—С7—Н7В	109.5	C3—C2—C5	119.63 (19)
H7A—C7—H7B	108.1	C4—C3—C2	119.6 (2)
C7—C8—C7 ⁱ	109.3 (2)	C4—C3—C6	117.06 (17)
С7—С8—Н8А	109.8	C2—C3—C6	122.88 (19)
С7—С8—Н8В	109.8	C3 ^{vi} —C4—C3	120.8 (2)
H8A—C8—H8B	108.3	C3—C4—H4	119.6
O1 ⁱⁱⁱ —Ni1—O1	98.61 (9)	O2—C5—O1	126.49 (17)
O1—Ni1—O3 ⁱⁱ	86.64 (5)	O2—C5—C2	117.11 (16)
O1—Ni1—O3 ^{iv}	174.74 (7)	O1—C5—C2	116.40 (17)
O3 ⁱⁱ —Ni1—O3 ^{iv}	88.12 (8)	O4—C6—O3	126.22 (17)
O1—Ni1—O5 ⁱⁱⁱ	86.44 (6)	O4—C6—C3	116.58 (16)
O1—Ni1—O5	91.91 (6)	O3—C6—C3	117.07 (16)
O3 ⁱⁱ —Ni1—O5	93.02 (6)	Н6А—О6—Н6В	103.0
O3 ^{iv} —Ni1—O5	88.81 (6)		
N1—C7—C8—C7 ⁱ	-178.27 (13)	Ni1-01-C5-02	8.0 (3)
O1 ⁱⁱⁱ —Ni1—O1—C5	-66.36 (16)	Ni1—O1—C5—C2	-171.57 (12)
O3 ⁱⁱ —Ni1—O1—C5	113.24 (18)	C1—C2—C5—O2	-140.7 (2)
O5 ⁱⁱⁱ —Ni1—O1—C5	-157.75 (17)	C3—C2—C5—O2	37.6 (2)
O5—Ni1—O1—C5	20.32 (17)	C1—C2—C5—O1	39.0 (3)
C2 ^{vi} —C1—C2—C3	-0.6 (4)	C3—C2—C5—O1	-142.72 (16)
C2 ^{vi} —C1—C2—C5	177.70 (17)	Ni1 ^v O3C6O4	8.7 (3)
C1—C2—C3—C4	0.5 (2)	Ni1 ^v —O3—C6—C3	-166.96 (12)
C5—C2—C3—C4	-177.8 (2)	C4—C3—C6—O4	-113.8 (2)
C1—C2—C3—C6	-171.7 (2)	C2—C3—C6—O4	58.6 (2)
C5—C2—C3—C6	10.0 (2)	C4—C3—C6—O3	62.3 (2)

supplementary materials

C2—C3—C4—C3 ^{vi}	-0.3 (3)	C2—C3—C6—O3	-	125.31 (17)				
C6-C3-C4-C3 ^{vi}	172.29 (15)							
Symmetry codes: (i) - <i>x</i> +3/2, <i>y</i> , <i>z</i> ; (ii) <i>x</i> , - <i>y</i> +1/2, <i>z</i> -1/2; (iii) - <i>x</i> +1, - <i>y</i> +1, <i>z</i> ; (iv) - <i>x</i> +1, <i>y</i> +1/2, <i>z</i> -1/2; (v) <i>x</i> , - <i>y</i> +1/2, <i>z</i> +1/2; (vi) - <i>x</i> +1/2, <i>y</i> , <i>z</i> .								
Hydrogen-bond geometry (Å, °)								
D—H···A	D—H	$H \cdots A$	D··· A	D—H···A				
N1—H1A···O2 ⁱⁱ	0.91	1.91	2.819 (2)	174				
N1—H1B····O3 ^{iv}	0.90	2.03	2.838 (2)	149				
N1—H1C····O4 ^{vii}	0.92	2.09	2.985 (2)	163				
O5—H5A···O4 ⁱⁱ	0.90	1.82	2.668 (2)	156				
O5—H5B…O2	0.90	1.85	2.731 (2)	164				
O6—H6B···O4 ^{vii}	0.96	2.39	3.321 (3)	164				
C7—H7A…Cg(C1-C4/C2 ⁱ /C3 ⁱ) ^{viii}	0.99	2.97	3.757 (2)	137				

0.99 2.60 3.433 (2) 142

C8—H8A…Cg(C1-C4/C2ⁱ/C3ⁱ)^{ix} Symmetry codes: (ii) x, -y+1/2, z-1/2; (iv) -x+1, y+1/2, z-1/2; (vii) -x+1, y-1/2, z-1/2; (viii) x+1/2, y+1/2, z-1/2; (ix) x+1/2, y-1/2, z-1/2; (ix) x+1/2, y-1/2; (ix) x+1/2; (ix) x+1/2;

z - 1/2.

Fig. 1

Fig. 2

